

Caltech Flow Cytometry and Cell Sorting Facility

Who we are?

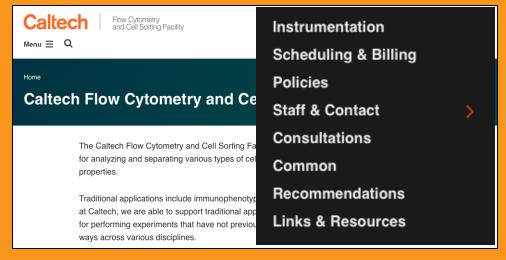
Michael Gregory - Director

Maddy Adolf – Cytometry Technician

Olivia Finney – Cytometry Technician

Shelley Diamond – Emerita Director

Ellen Rothenberg – Faculty Supervisor

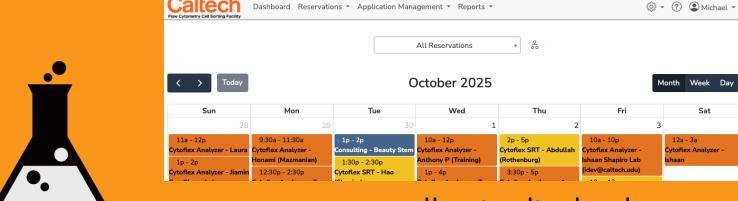

Main Contact –

cellsort@caltech.edu

Office - x3998

Mike - mikeg@caltech.edu

Cell - 561-641-5185

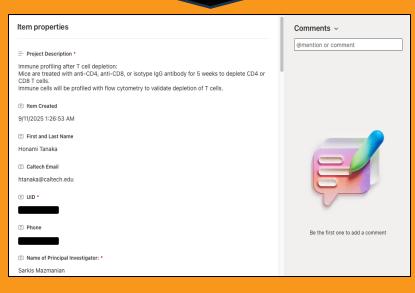


https://cellsort.caltech.edu

Getting Started

- New Project Consultation
 - Fill out our New Project form to schedule a consultation
 - Provide as much information as possible (we can update it during the meeting!)
 - Meet with the staff to discuss your project before you begin
 - BEFORE you order reagents, etc, as we may suggest changes!
- Sorts and trainings booked with staff (cellsort@caltech.edu!)
- Self-serve analysis booked directly on our scheduler

Flow Cytometry and Cell Sorting Facility Updates!


- New project form
- BioSorter large particle sorter
 - more on this later!
- Self-serve sort training
- FACSFusion downtime
- Retiring SY3200 and MACSQuant VYB
- Potential upgrades

Updates!

New Project Consultation form

- Input via Microsoft forms
- Responses transferred to Sharepoint list
 - Modifiable with tracking entries are confirmed and updated during consultation or when project changes
 - Collaborative PI and other parties can be given access to view/comment
 - Keeps all staff members
 up-to-date on the project details
 - Searchable

Updates!

Self-serve sort training

- Advantages
 - More flexible scheduling allows for afterhours and weekend sorting with appropriate training
 - Training customized to needs
 - Less expensive/hour
- Disadvantages
 - On your own for troubleshooting
 - Longer training period, with independent use only possible once objective benchmarks are satisfied
- Possible on FACSFusion and Cytoflex SRT (requires additional setup fee). BioSorter will be primarily self-serve!

Updates!

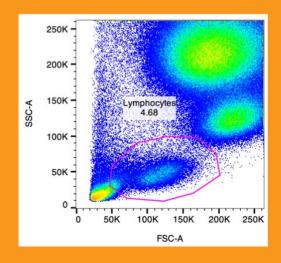
FACSFusion excessive downtime

• Previous service provider unable to repair instrument fully in ~2.5 months. Returning to manufacturer (BD) service contract.

Retiring SY3200 sorter and MACSQuant VYB analyzer

- VYB coverage ended earlier this year. Still available, but may not be able to repair if it breaks!
- SY3200 coverage will end in December. Still available, but most sorts will need to be moved to Fusion and SRT
 - Loss of capabilities
 - UV laser
 - stream-in-air
 - Let us know if these capabilities will be require for your future projects!

Upgrades?


- New analyzer? Spectral instruments?
 - More colors (5 laser systems can get to ~40 colors!)
 - Full spectrum means autofluorescence can be better characterized
 - More possibility for label-free identification
 - Aurora by Cytek, ID7000 from Sony, Mosaic add-on for Cytoflex
- New Sorter? Stream-in-air? Spectral? Microfluidic? Imaging?
- Let us know your needs for upcoming projects to help us decide priorities!
- Labs with their own instrument that would rather not have to manage them? Happy to talk about mutually beneficial solutions!
- Design/development groups on campus? Please connect us!

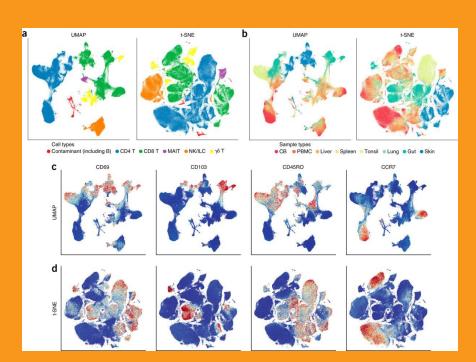
Flow Cytometry Data

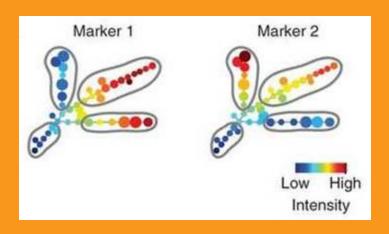
Flow cytometry data is stored as a list mode file:

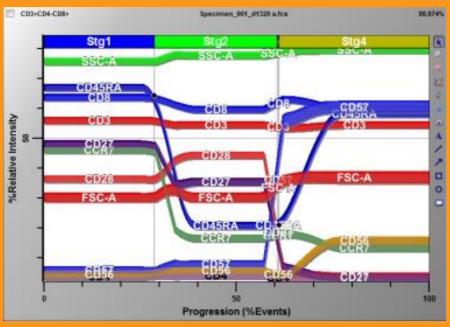
Ιd	Time	Plate	Row	Column	Source	well	Clog	Sorted	status	In Reg	ions	T0F	Extinc	tion	Green	Yellow
1	59	n/a	0	0	n/a	N	0	00001	308	76.9	0.33	0.16	0.22	9293	320	n/a
2	532	n/a	0	0	n/a	N	0	00001	395	115	0.38	0.12	0.19	11129	408	n/a
3	5156	n/a	0	0	n/a	N	0	00001	127	20.1	0.08	0.04	0.04	5184	136	n/a
4	30589	n/a	0	0	n/a	N	0	10001	3656	4593	341	33.9	16.7	50063	3672	n/a
5	30709	n/a	0	0	n/a	N	0	10001	4128	5052	207	21.9	22.4	48981	4144	n/a
6	31095	n/a	0	0	n/a	N	0	10011	3626	3889	178	33.7	411	43211	3640	n/a
7	31315	n/a	0	0	n/a	N	0	10001	4159	4877	729	75.2	31.6	47135	4168	n/a
8	31390	n/a	0	0	n/a	N	0	10101	3442	4445	158	16.4	13.2	49612	3456	n/a
9	31463	n/a	0	0	n/a	N	0	10011	3597	5072	228	52.7	761	59586	3608	n/a
10	31555	n/a	0	0	n/a	N	0	10001	3549	4684	274	27.6	19.8	53955	3560	n/a
11	31684	n/a	0	0	n/a	N	0	10001	3679	4242	350	33.0	19.2	47299	3688	n/a
12	31867	n/a	0	0	n/a	N	0	10001	3821	4105	211	20.3	15.8	47023	3832	n/a
13	31870	n/a	0	0	n/a	N	0	10001	3727	5068	345	36.8	23.5	58797	3736	n/a
14	31904	n/a	0	0	n/a	N	0	10001	3731	4332	405	47.3	21.2	48395	3744	n/a
15	32033	n/a	0	0	n/a	N	0	10001	4882	6558	613	67.8	25.2	53294	4896	n/a

- Files can get very large, depending on the number of events AND the number of parameters recorded for each event.
- Specialized software allows you to explore the data visually (also possible for RNA-seq data!)

Flow Cytometry Analysis Software

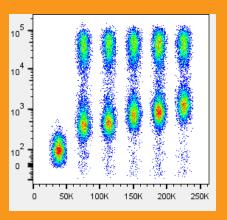

- FlowJo Caltech site license (currently \$310/yr)
- FCSExpress & OMIQ Dotmatics
- Modfit & Gemstone VSH specialty software
- Kaluza & Cytobank Beckman Coulter
- CytoScribe BioLegend brand new!

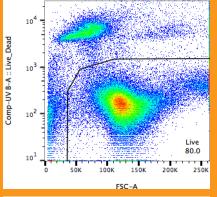

FREE!


- Floreada.io browser-based simple analysis tool
- R and Python analysis modules these have gotten MUCH better
- Vendor acquisition software (ex CytExpert and FlowPilot)
 - Not recommended for complex analysis! Available on our Sharepoint!

Advanced Data Analysis Tools

- Useful for exploring high dimensional datasets
 - UMAP, tSNE, and viSNE
 - Gemstone
 - Spade

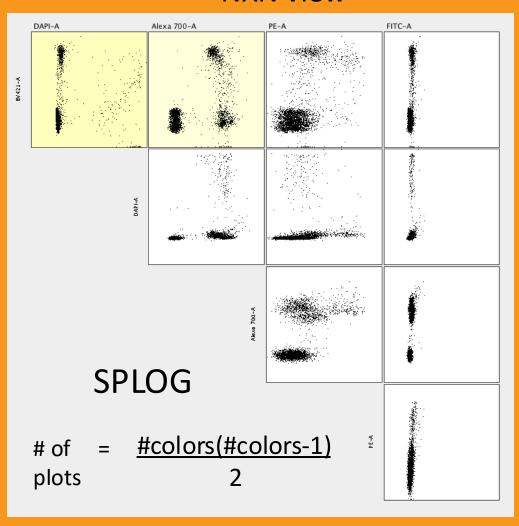

Preparing Properly


Experimental Design

- Titrating ab/dye concentrations
- Including a viability dye
- Debris reduction/removal
- Proper controls

Instrument Setup

- Choosing Log/Linear for FSC/SSC
- Setting threshold
- Optimizing detector settings
- Screen for doublets

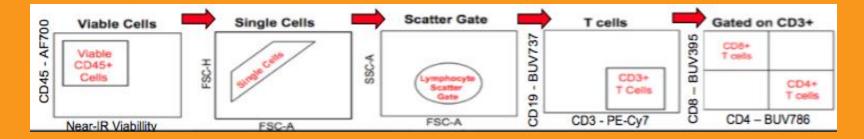


Voltages/Gains and Compensation

Setting Voltages

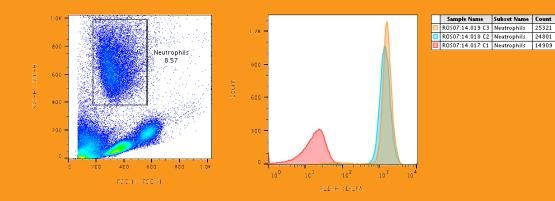
- Hardware on instruments have ideal voltages
 - Starting point, may not be ideal for your cells
- Find the best signal to noise
 - Voltration?
- Set voltages with compensation in mind!

NXN view

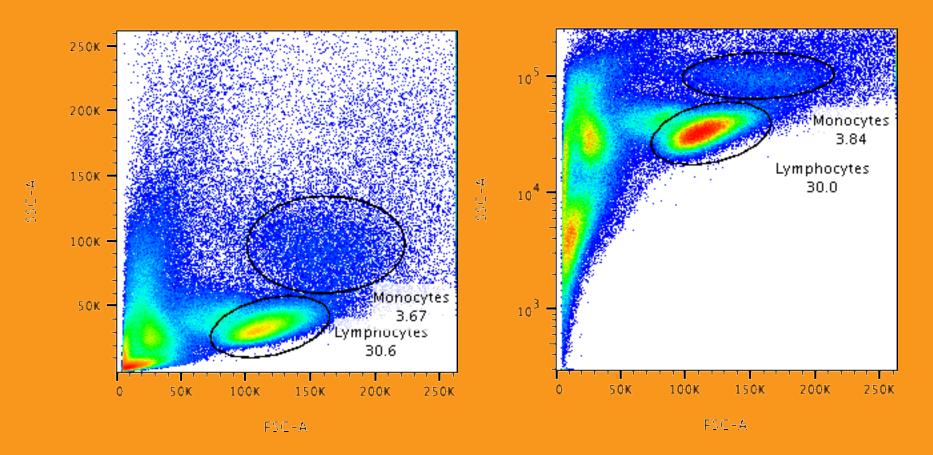


Proper Controls Ensure Good Setup and Gating

- Negative control Cells without any staining
 - Used to set the baseline voltages for all colors in an experiment based on the natural autofluorescence of your cells
- Isotype Controls Isotype-matched irrelevant antibodies
 - used to assess 'non-specific' binding of the non-antigen targeting regions of mAbs. Should
 NOT be used to set gating. Can inform on sample preparation issues (ie.blocking)
- Compensation Controls
 - Controls each stained with a single color, minus all others. Used to compensate for spectral overlap between fluorochromes
- FMO Controls Fluorescence Minus One
 - Controls each stained with all colors, except one. Used to account for interactions between
 fluorochromes. A powerful & recommended gating tool for multicolor experiments

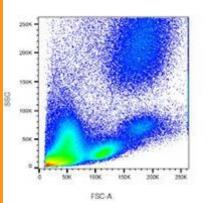

Data Analysis – How to begin?

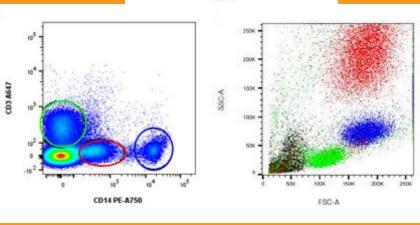
- What's the question you're looking to answer with your data?
 - Phenotyping Subpopulations

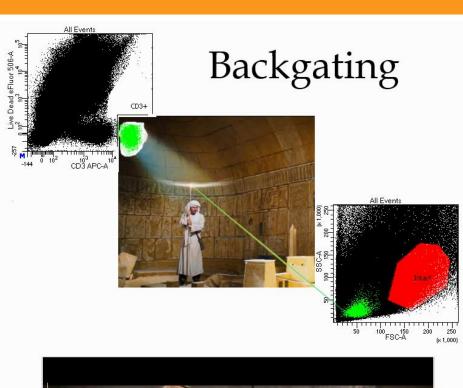


Mean (or Median) Fluorescent Intensity (MFI)

- MFIR

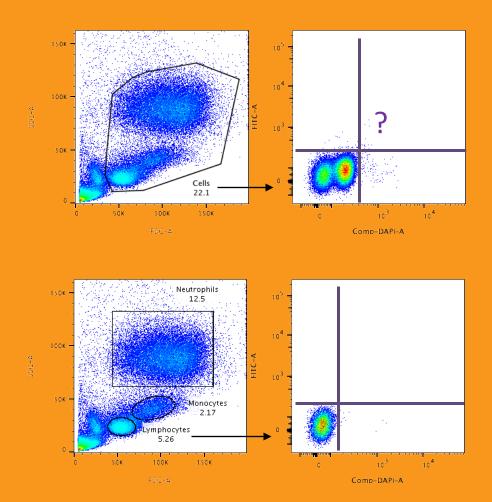

SSC - log versus linear




Newer instruments/software allow you to change the scaling after the fact, but if settings are optimized for one or the other you could be stuck.

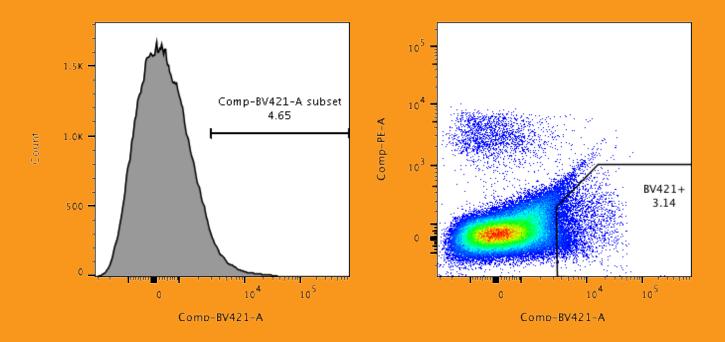
Finding your Cells of Interest

 FSC v SSC – backgating – during acquisition AND/OR analysis.



They're digging in the wrong place.

gating

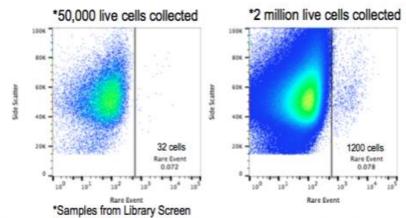

Finding your Cells of Interest

- Gating different scatter populations early?
 - Different cell populations may have different autofluorescence!

Finding your Cells of Interest

1 parameter vs 2 parameter plots help ID the real positives.

- Auto-fluorescent cells that were not removed by upstream gating can appear as a 'spike' that should be considered when gating.
- Spectral cytometers allow for autofluorescence subtraction or extraction.


Number of cells to acquire?

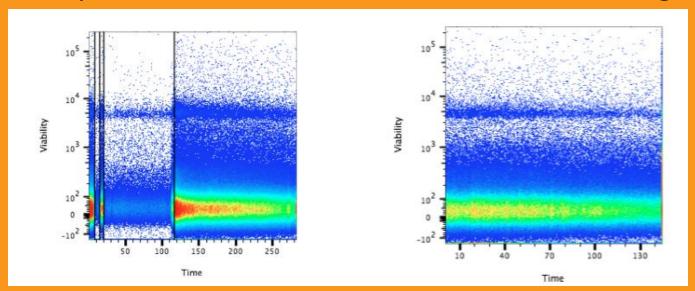
 Must determine how many cells will be enough to analyze smaller subpopulations.

Precision, most commonly expressed in coefficient of variation (CV) values, is defined by Shapiro* (2003) as "The extent to which identical values are obtained from measurements of identical particles." (pg. 214)

Cell Count	Precision		
10	+/- 31.6%		
50	+/- 14.1%		
100	+/- 10.0%		
1000	+/- 3.2%		
10000	+/- 1.0%		

As the number of events collected increases, the variability in the precision of your data decreases.

Precision of data is determined on your gated cells of interest.

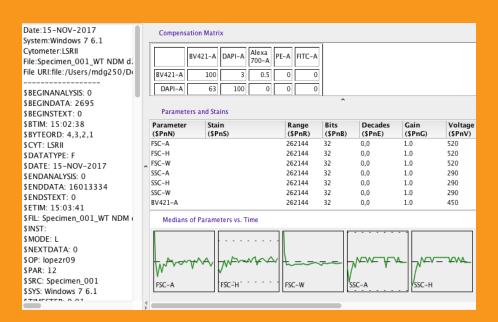

i.e. If you have 500 total events, but out of that number only 10% are your cells of interest (50 cells), your precision decreases from +/- 4.4% to +/- 14.1%.

Note: An equal number of your negative control should also be collected.

Standard is to collect at least 1,000 gated cells of interest for statistical significance.

Data QC!

Time parameter - can use to assess and even salvage data!


flowClean: Automated Identification and Removal of Fluorescence Anomalies in Flow Cytometry Data

Kipper Fletez-Brant, 1,3 Josef Špidlen, 2 Ryan R. Brinkman, 2 Mario Roederer, 3 and Pratip K. Chattopadhyay 3,*

"Tracking cell populations in centered log ratio (CLR) space" to "flag time periods with fluorescence perturbations leading to the emergence of false populations."

Automation for Longterm Projects

- Using Keywords
 - Who's seen these windows before?
 - Can enter custom keywords to help automate analysis
 - Easily map gates to data files based on their keywords.

Κϵ	yword List							
	Name \triangle	Value	Explanation					
	\$BEGINANALYSIS	573376						
	\$BEGINDATA	2596						
	\$BEGINSTEXT	0						
	\$BTIM	15:12:07.1093750	The time at the beginning of data collection, format hh:mm:ss.					
	\$BYTEORD	1,2,3,4	Byte Order					
	\$CYT	BD FACSCanto II	The cytometer used to acquire the data.					
	\$CYTSN	V96100290						
	\$DATATYPE	I	Data format.					
χ	\$DATE	27-MAR-2017	The date the file was created, format dd-mmm-yy.					
	\$ENDANALYSIS	590897						
	\$ENDDATA	573375						
	\$ENDSTEXT	0						
	\$ETIM 15:13:07.2343750		The time at the end of data collection, format hh:mm:ss.					
<								
			Add Keyword Remove Keyword					

MIFlowCyt

Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) Compliant Manuscript Using the International Society for Advancement of Cytometry (ISAC) FCS File Repository (FlowRepository.org)

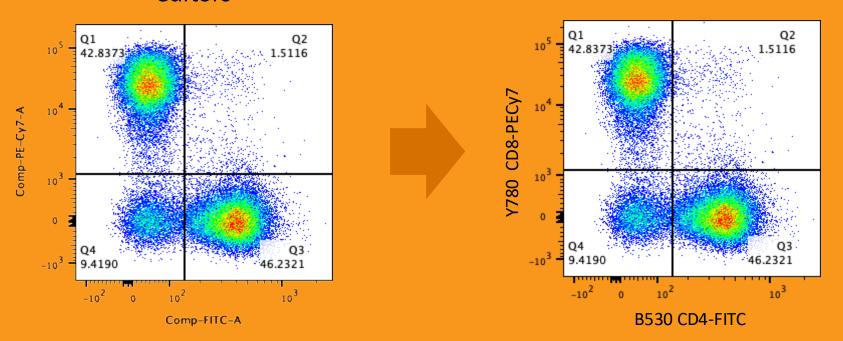
Josef Spidlen, Karin Breuer, Ryan Brinkman

First published: 01 July 2012 | https://doi.org/10.1002/0471142956.cy1018s61 | Citations: 24

	Purpose/Goal/Hypothesis				
Experiment Overview	Experiment Variables				
Experiment Overview	Conclusions				
	Quality Control				
	Material				
Flow Comple (Chesimon)	Source/Organism/Location				
Flow Sample (Specimen)	Treatment				
	Reagent/Analyte/Detector/Reporter				
	List-mode Data				
Data Analysis	Compensation				
Data Analysis	Gating				
	Descript ive statistics				
	Instrument Identification				
Instrument Dataila	Flui di cs Configurati on				
Instrument Details	Optical Configuration				
	Electronic Configuration				

- Minimum Information about a Flow Cytometry Experiment
 - Published in 2012, following CYTO workshop
 - Annotates data with lots of essential information
 - Aimed to make (re-)use of public flow cytometry data sets more possible
- "Required" for FlowRepository http://flowrepository.org
 - And some specific journals

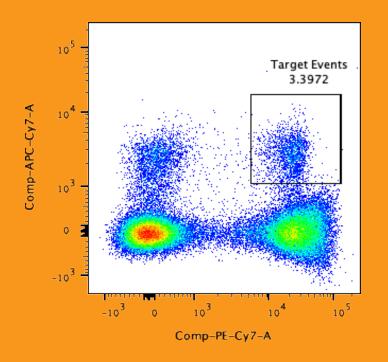
Methods Section

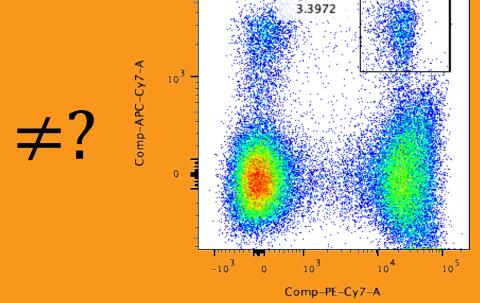

- Sample Preparation and Exp Design:
 - Sample source and preparation
 - Treatments
 - Labeling (ab clones, conc, incubation times/conditions)
 - Controls used,
- Instrument Setup:
 - Describe instrument
 - Manufacturer, model, software
 - Optical configuration
 - Fluidics setup (pressure, nozzle size, buffers used, etc)
 - Sorting conditions

Methods Section

- Data Acquisition/Analysis:
 - How compensation or unmixing was performed
 - Antibodies, cells versus beads
 - Justification of changes/modifications
 - Number of events recorded
 - Smaller populations might require more events
 - Gating scheme
 - Gating decisions what controls were used to set these
 - Justification for adjustments, etc
 - Statistics
 - Which populations are included?
 - MFI = mean? Median?
 - Fold increase over control vs standardizing to a bead, etc

Results Section

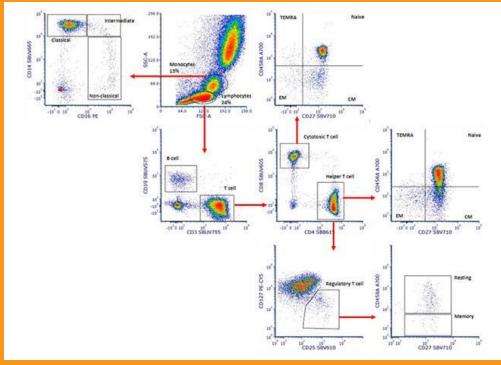

- Figures Dot plots
 - Adjust axis labels to clearly convey what is being shown
 - Change generic names to appropriate label usually the marker/antigen, fluorophore, detector name
 - Ex. CD45-FITC B530
 - Names can be changed using FCS editors or manually with image editors



Results Section

- Figures Dot plots
 - Scaling of axis
 - Scaling should be consistent between samples
 - Same data, but visualized differently confusing for readers

Target Events


Results Section

Gating Scheme

- Full gating scheme should be included in supplemental data
- FMO controls and other control gating may or may not be included,
 but raw data should be made available in public repositories like Flow
 Repository

Alternative gating

- Not always necessary to start with FSC/SSC
- Start with Time,
 landmark
 gating (like CD45,
 DAPI, etc)

Publication Summary

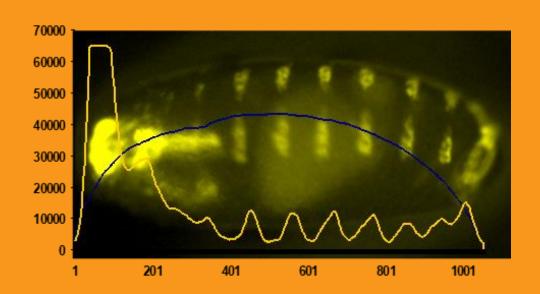
- Aim to provide all information necessary to replicate experiment
 - MIFlowCyt guidelines are very comprehensive
- QC your data well and explore in a variety of analysis pathways
 - Backgate to make sure you are not missing populations
 - Be mindful of the upper right corner, cells can hide there!
 - Triple check your compensation before analyzing!
- Include gating scheme and gating justifications
 - Flow cytometry data can be presented as a generalized gating scheme,
 but deviations/adjustments need to be justified
- Plots
 - Label with Detector name, Marker/Antigen, and Fluorophore
 - Scale is arbitrary, but should be consistent. Be careful about over adjusting the scale to the point that tic marks are hard to understand

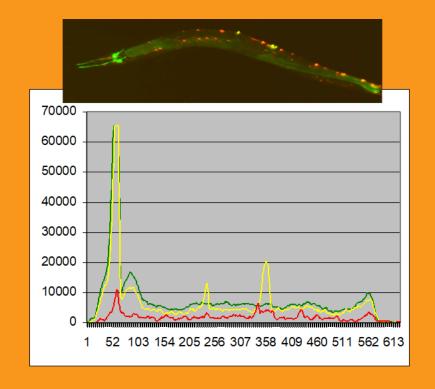
Large Particle Sorter

BioSorter

Union Biometrica Kerckhoff B133

- FOCA 250
- FOCA 500
- FOCA 1000
- FOCA 2000
- Large particle sorting $^{\sim}30\mu m$ to $800\mu m$
- Colinear lasers at 488nm and 561nm
- 3 Detectors:
 - Bandpass Filters: 512/25, 543/22, 615/25


- Sample deposition into a variety of plates and tubes including:
 - Culture plates (6, 12, 24, 48, or 96-well + custom)
 - PCR plates
 - 384-well plates
 - 1.5 mL, 5 mL, 15 mL and 50 mL tubes
- Sorting droplet is dispensed straight down for more precision into smaller welled plates


Applications

FOCA	250	500	1000	2000			
Object Diameter Size Range	10-200 micron	10-350 micron	20-700 micron	40-1500 micron			
		Beads (Alginate, C					
	C.elegans	C.elegans	Zooplankton	Zebrafish (embryos and larvae)			
000		Drosophila (embryos and 1st instar larvae)	<i>Drosophila</i> (embryos, L1 and L2 instar larvae)	<i>Drosophila</i> (up to 3rd instar larvae)			
Applications	Sea Urchin embryos	Mosquito (embryos and first instar larvae)	Mosquito (embryos and first, second and third instar larvae)	Xenopus, Medaka, Daphnia			
	Stem cell	Pancreatic islet (mouse & rat)	Pancreatic islet (mouse, rat & human)				
	Hepatocyte	Embryoid body					
<i>A</i> • A	Kidney duct cell	Adipocyte					
		Pancreatic duct cell					
	Pollen		Arabidopsis seed				
			A				
https://www.unionbio.com/applications/							

BioSorter Special Features

- Straight down dispensing (only one population at a time)
- Very gentle sorting
- Recovery of unsorted 'waste' to rerun
- Plate/tray sorting
- Profiler
- Future?
 - More colors? Sterile enclosure?
 - Additional FOCA?

User Projects

• Sally Ireri, Ph.D.

Mengyi Cao Lab

Vera Beilinson

Margaret McFall-Ngai/Pachter Labs

Helena Awad

Linda Hsieh-Wilson Lab

• Amy Chow, Ph.D.

Mitchell Guttman Lab

Bacterial scRNA-seq isolated from host

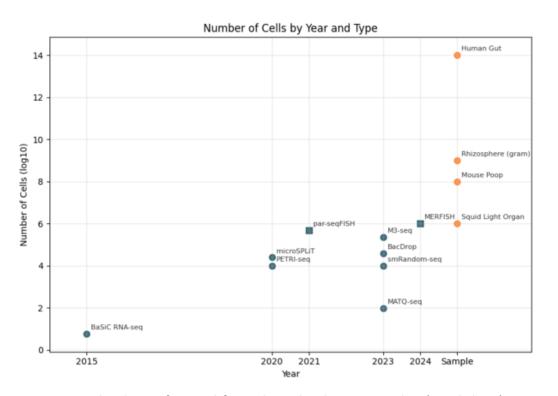
Vera Beilinson
McFall-Ngai/Pachter Labs
Flow Cytometry Facility Lab Meeting
Oct 27, 2025

Bacterial scRNA-seq methods are increasing

NGS

Untargeted Captures tmRNAs

Imaging

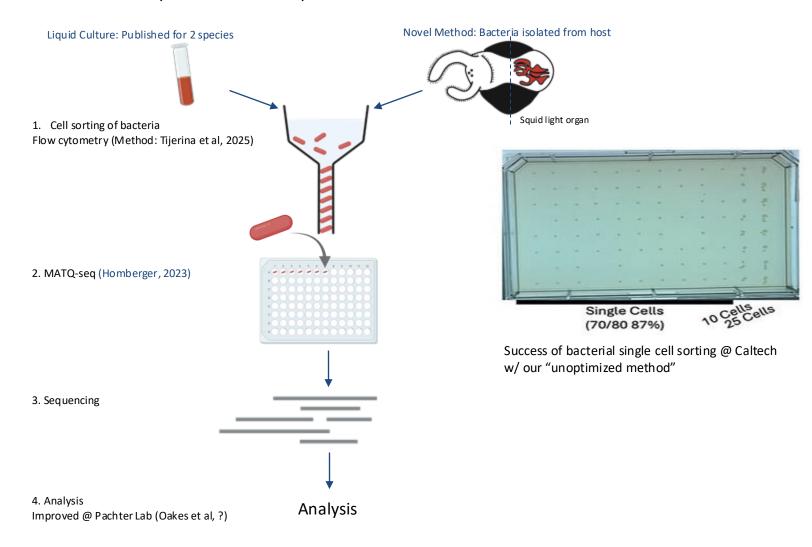

on user)

NGS

sample imaging

Not all methods are reproducible (BacDrop)

Targeted (price ↑ w/ # of genes, # of cells depe



Methods performed from *liquid culture* samples (no debris).

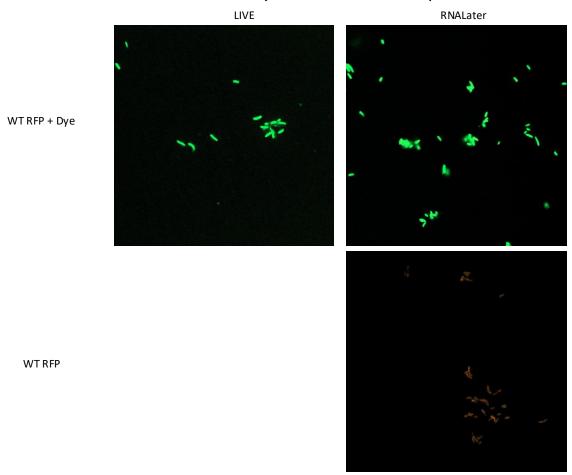
What about bacteria from a host?

Host debris is an issue

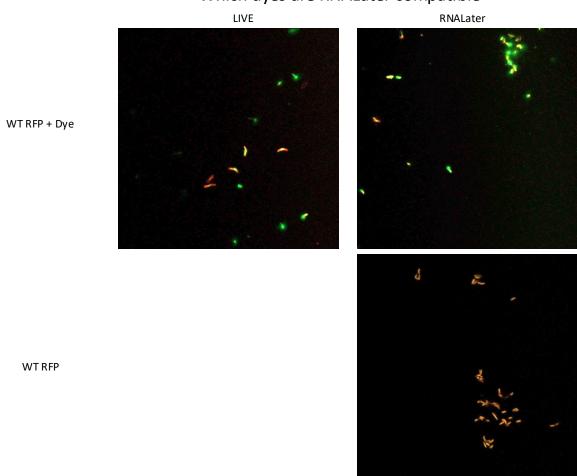
Goal: perform MATQ-seq on bacteria isolated from a host

Goal: More accurate cells sorting

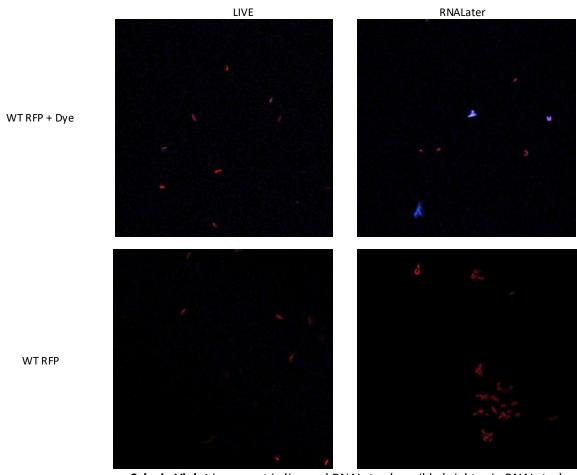
Previous sorting: size + presence of RFP plasmid → better to have counterstain to avoid debris in well Goal: Identify a counterstain that is compatible for growth AND RNALater safe

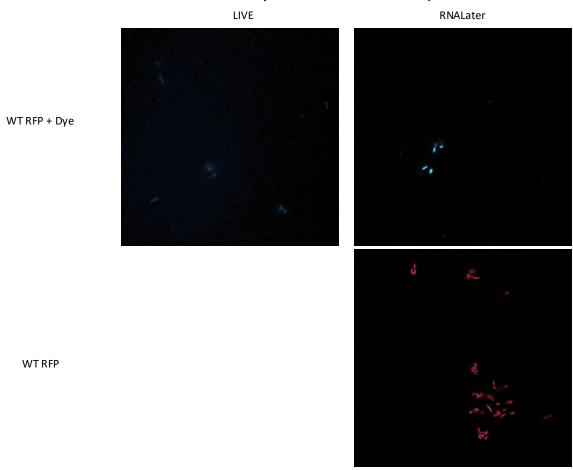

- → Current no information online!!
- → RFP is RNALater safe (GFP and YFP is not)

Why:


- → Sorting live onto agar plates is a good sorting control to know success
- → For MATQ-seq it is ideal if the samples are fixed in RNALater prior to sorting since bacteria change transcription fast

Dye (1:250 and 0.2:250)	Liquid culture low OD	Liquid culture high OD	Isolated from host (squid)
SYTO9	No/minor growth	No/minor growth	No/minor growth
Bactoview Green	No growth	No growth	No growth
Calcein Violet	Growth	Growth	Growth
Hoescht	No growth	No growth	?

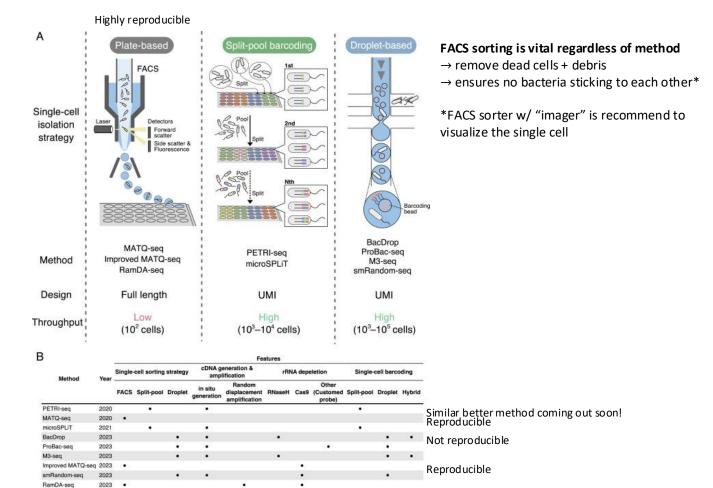

 $[\]rightarrow$ Calcein Violet is the only counterstain that allows for growth


- ightarrow Syto9 is present in live and RNALater but Syto9 obliterated RFP
- \rightarrow Some background in Syto9 channel

- → **Bactoview** is present in live and RNALater
- \rightarrow Some background in Bactoview (FITC) channel

- → Calcein Violet is present in live and RNALater (possibly brighter in RNALater)
- \rightarrow Little background in violet channel

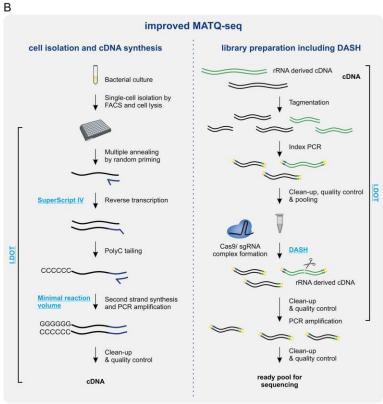
- \rightarrow Hoescht is present in live and RNALater but obliterates RFP signal
- ightarrow Little background in Hoescht channel

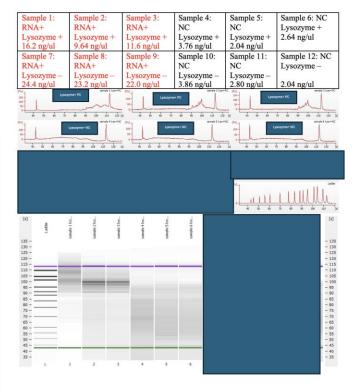

Conclusion

- \rightarrow Calcein Violet is good counterstain allowing for growth
- → SYTO9, BactiView Green, Calcein Violet are RNALater fixable

Next steps:

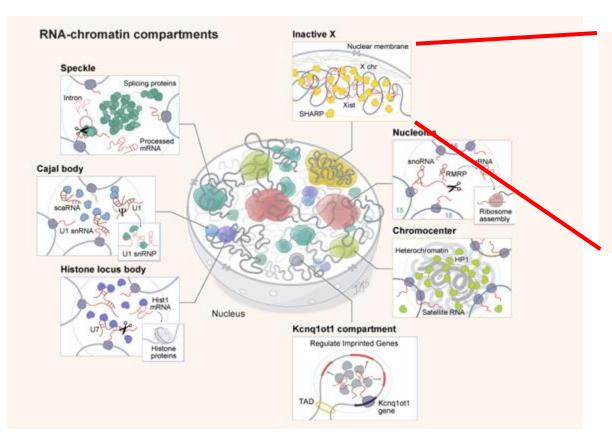
Try sorting with calcein violet

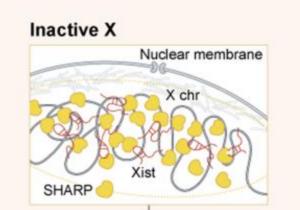

Various methods



Most methods are similarjust depends if in well or within cell

Nishimura 2025


Vera – success @ Caltech. cDNA(no DASH). NC are low, PC are within range w/ expected peak shape. Critical to do in PCR/clean hood.


Homberger et al 2023

PrimeFlow RNA

Amy Chow, Ph.D. Guttman Lab

Guttman lab research focus

Understanding the role of ncRNAs in organizing chromatin architecture and the impacts on gene expression

https://guttmanlab.caltech.edu/research/

PrimeFlow RNA principle

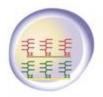
PrimeFlow™ RNA Assay Kit workflow

Sample Preparation

Target Hybridization

Signal **Amplification**

Detection


Suspension cells with RNA fixed

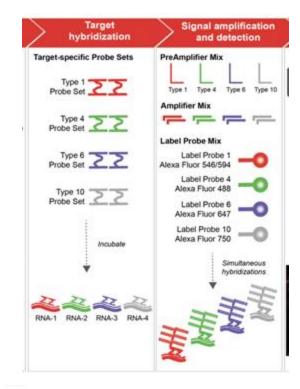
- Label proteins with antibody (optional).
- 2. Fix and permeabilize cells in suspension.

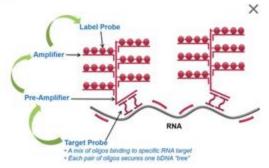
zz zz Gene-specific Target Probes

 Incubate cells with gene-specific Target Probes (Type 1, 4, 6 or 10).

PreAmplifier - Amplifier

 Hybridize with Pre-Amplifier and Amplifier DNA (Type 1, 4, 6 or 10)




 Fluorescent Label Probe

- Add Label Probes to cells.
- Process cells using a standard flow cytometer.

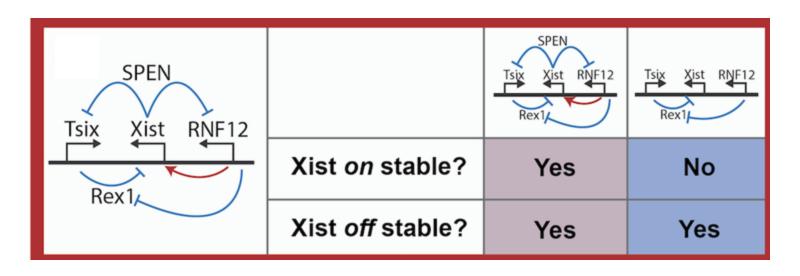
https://www.thermofisher.com/us/en/home/life-science/gene-expression-analysis-genotyping/quantigene-rna-assays.html https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cellular-imaging/in-situ-hybridization-ish/rna-

fis h/viewrna-assays.html

https://documents.thermofisher.com/TFS-Assets/LSG/manuals/MAN0019788 PrimeFlowRNAAssay UG.pdf

Our results and future plans

20 10 2 10 3 10 4 10 5 10 6 FL11-H :: AL647 660Red-H


Negative controls critical for

determining

background

no Dox plus Dox

CRISPRi screen to find regulators such as Rex1

Please give us your Feedback!

Feedback survey →

Future needs questions:

Spectral instruments?

Imaging instruments?

Booking sorting directly?

Other needs/questions?

Please scan the QR code to rate your experience with the Facility and give us some feedback.